
3*71-1 90 '<

PARALLEL RELAXATION
6f ?. /l ötÄww

r(0)

Goodyear Aerospace Corporation
Akron, Ohio

for

D D C
GTOflEl

JUL S7 1971.

CSEffUTS
B->

R-%* educed by

N/T1C AL TECHNICAL
INI aATION SERVICE

Springfield, Va. 11151

*1

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH • JULY 1971

Approvea for V*™"?""*

-,- ^*«,»,VWi>r,tl^(WJW**.ljt.W('

Security Classification

DOCUMENT CONTROL DATA -R&D
(Security classification el title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author)

Goodyear Aerospace Corporation
Akron, Ohio 44315

2a. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2b. GROUP

3. REPORT TITLE

PARALLEL RELAXATION

*. DESCRIPTIVE NOTES (Type ol report and inclusive dates)
Scientific Final

5. AUTHOR(S) (First name, middle initial, lt,st name)

P. A. Gilmore

6. REPORT DATE

July 1971
7». TOTAL NO. OF PAGES

33
76. NO. C REFS

8». CONTRACT OR GRANT NO.

F44620-70-C-0100
b. PROJECT NO.

9749
61102F
681304

9a. ORIGINATOR'S REPORT NUMBERISI

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report) ,

gBrflH'98 ?
10. DISTRIBUTION STATEMENT

Approved for public release;
distribution unlimited.

II. SUPPLEMENTARY NOTES

TECH, OTHER

12. SPONSORING MILITARY ACTIVITY

Air Force Office of Scientific Research (NlJ)
1400 Wilson Boulevard
Arlington, Virginia 22209

13. ABSTRACT

Stationary iterative techniques for solving systems of linear equations are re-

viewed, and an accelerated form of the Point-Jacobi method (referred to as

parallel relaxation) is developed. Associative processors are introduced, and

operational characteristics are described. The parallel relaxation method is

structured for parallel execution on an associative processor, and estimated

parallel and sequential execution times are compared. Timing estimates show

an advantage for parallel execution, which increases with the size of the system

of equations. The results are extended to arbitrary stationary iterative techni-
ques.

DD ,Fr..1473

r

i

GOODYEAR AEROSPACE
CORPORATION

AKRON, OHIO 44315

PARALLEL RELAXATION

July 1971

P.A. Gilmore]

I
I

, for *»»»« r!leB*"

I
I
I
I
I
I

I
I

FOREWORD

This report is submitted by Goodyear Aerospace Corporation (GAC) to the Air

Force Office of Scientific Research (AFOSR) as the final technical report of re-

search performed under Contract F44620-70-C-0100 during the period of 1 July

1970 through 30 June 1971. Project monitor for this program is Lt. Col.

Nicholas P. Callas, AFOSR, Arlington, Virginia. This report was issued by

the originator as GER-15262. A version of this report has been submitted for

publication.

ABSTRACT

Stationary iterative techniques for solving systems of linear equations are re-

viewed, and an accelerated form of the Point-Jacobi method (referred to as

parallel relaxation) is developed. Associative processors are introduced, and

operational characteristics are described. The parallel relaxation method is

structured for parallel execution on an associative processor, and estimated

parallel and sequential execution times are compared. Timing estimates show

an advantage for parallel execution, which increases with the size of the system

of equations. The results are extended to arbitrary stationary iterative techni-

ques.

-ii-

I
I
r
r
r
r

i

TABLE OF CONTENTS

FOREWORD

LIST OF ILLUSTRATIONS

LIST OF TABLES

Section Title

1 INTRODUCTION

2 BACKGROUND

3 STATIONARY ITERATIVE TECHNIQUES AND
PARALLEL PROCESSING

a. Basic Stationary Iteration . .

Ja. Accelerated Point-Jacobi

c. Comparison of Convergence Rates

d. Variations of PR Iteration

e. Commentary

4 PARRALLEL EXECUTION ON AN ASSOCIATIVE
PROCESSOR

a_. Introduction

b_. AP Structure ' .

c_. AP Operations ,

d. Parallel Relaxation Structure ,

e_. Timing Estimates

f. General Stationary Iteration

5 SUMMARY

6 REFERENCES ...

XI

iv

iv

1

2

5

5

6

11

14

17

17

17

18

19

23

30

31

33

33

I
I ■in«

!

ii

LIST OF ILLUSTRATIONS

Figure Title Page

1 Discrete Approximation to the Unit Square 3

2 co-Dependent Eigenvalues for the PR Iteration Matrix
J = |(1 - (*)) I + OJD"

1
 (E + F)| for the Given Matrix A . 11

3 Simplified AP Structure 20

4 AM Structure 21

5 AP Data Storage Scheme 24

6 AP Storage Configuration after Step 1 25

7 Tree-Sum Algorithm 26

8 AP Storage Configuration after Step 2 27

9 AP Storage Configuration after Step 3 - . . 28

10 AP Storage Configuration after Step 5 29

LIST OF TABLES

Table Title

I Comparison of Convergence Rates 13

II Execution Time in Milliseconds for One Sweep by the
PR Method 31

■IV-

r
r
r
r
r
r
r
r

r

i

!

i
i

1. INTRODUCTION

In recent years several designs have been proposed for advanced computer

organizations known as parallel processors. A distinguishing feature of the

parallel processor is its capability to perform many - perhaps thousands -

of arithmetic operations simultaneously or in parallel. The implementation

of parallel processors will provide the scientific community with vastly in-

creased computational capacity. The realization of the potential offered by

the new computer organizations will require the development of new compu-

tational algorithms and procedures. The new computational procedures will

no doubt derive both from the restructuring of existing methods and the de-

velopment of new ones, and will certainly occasion considerable theoretical

investigation of the properties of the new methods. In this report the subject

of parallel execution of matrix-oriented computations is considered. A

particular type of matrix computation is considered, the numerical solution

of systems of linear equations by stationary iteration, and a particular type

of parallel processor, the associative processor (AP).

In Seccion 2, a brief statement of the rationale behind the application of par-

allel processing to the solution of linear systems is offered. Section 3

opens with a review of stationary iteration. Subsequently, the theoretical

basis for an accelerated form of the Point-Jacobi iteration is developed, the

resulting method being called parallel relaxation. In Section 4, the parallel

relaxtion method is structured for parallel execution on an associative pro-

cessor and estimates are made of relative execution speeds for parallel and

sequential processing. The results of the structuring and timing analyses

are extended to arbitrary stationary iterative techniques. In Section 5 the

results of this report are summarized.

Throughout this report, a system of linear equations in matrix form is de-

noted by AX = B, where A = (a..) is an n X n matrix of coefficients;
T *^ X = (x., Xp, . .., x) is an n X 1 vector of unknowns; and B =(b,, b_,

. . . , b) is an n X 1 vector of real constants. Unless otherwise stated,

we shall assume that A is real and symmetric with positive diagonal ele-

ments. The stationary iterative techniques with which we are concerned

are the Point-Jacobi (PJ) and Gauss -Seidell (GS) methods; the accelerated

•1-

successive over relaxation (SOR) form of GS; and an accelerated form of PJ

that we shall call parallel relaxation (PR).

2. BACKGROUND

System of linear equations often derive from discrete approximations to

partial differential equations. An example of this is provided by the numeri-

cal solution of Laplace's equation over a rectangle, which we shall employ

as an example and for elucidation of the rationale behind parallel processing

for matrix computations. Let us consider the numerical solution of the

Dirichlet problem for Laplace's equation on the unit square. We seek ap-

proximations to a function u (x, y) that satisfies

d2ut*' r* + öLujx^ = 0> (1)
9x fly

with xe|0, lj /sye |0, ij in the interior of the unit square and satisfies a

boundary condition

u(x, y) = g(x, y) . (2)

where g(x, y) is a given function defined in the boundary of the square. We

select a uniform mesh with spacing h = l/3 and number the interior and

boundary mesh points according to the convention implied in Figure 1, where

u. denotes the approximation to u(x, y) at interior point i, and g. denotes the

value of g (x, y) at boundary point j.

If we employ the familiar 5-point stencil for the discrete approximation of

Equation 1, we have for each interior mesh point (x, y) of the square the

approximation

u(x0, yQ) = j u(xQ + h, yQ) + u(xQ - h, yQ) + u(xQ, yQ + h) + u(xQ, yQ - h) (3)

From this "north, south, east, west" neighbor approximation, there results

the system of linear equations

-2-

r

r
r
r

9] 92
93 94

95
ul u2 96

'12

1

3 I 97 u3 u4

i ,99 9lO 9"

X ■*

Figure 1 - Discrete Approximation to the Unit Square

ul = ?(U2+U3) + 4^2 +g5
)

u2 = ^(Uj + u4) + i (g3 + g6)

u3 = 7(ul + u4> +T(S7 + g10}

u4 = 4-(u2+u3) +{(g8 + gn) • (4)

For this simple case, a direct method of solution for Equation 4 would seem

the obvious choice, but we are using the example as a vehicle for introduc-

ing iterative methods of solution.

■3-

i
1

1

j From the approximation of Equation 3, we can develop an iterative solution

that proceeds as follows. We select initial estimates <u, , u, , u, ,
-r (0)) ' j u/ > of u{x, y) at the interior mesh points and then cyclically improve the

estimates using Equation 3. For example: given the initial estimates, we

improve the estimate at point 1 by computing I
I

T

I

»I
(1,^(»2

<0,-3,0,H<S2^ (5)

Passing to interior point 2, we have the option of using either the initial esti-

mate of u1 or the new estimate just computed. If the first option is taken,

we compute

u (1> =i/u (0)+u (0)W^(° + g)' U2 4 ^ul + u4 / 4 U3 H'' (6)

if the second option is taken, we compute

(1) _
U2 i(«i(1)+-4C0,)4c.s^)- m

Similarly, we can proceed to update points 3 and 4, either using only esti-

mates available at the start of the updating cycle or using new estimates as

they become available. If updating of estimates is deferred until the end of

each cycle, or sweep over the mesh, we refer to the updating procedure as a

"simultaneous displacement" procedure and express the passage from the

k to the (k + l)st estimate by

(go + gc) vk+i)=^2
(kl-3(k,H<

»2
<k + 1)=MVk,-4(k))*i%^>

u3(-')4(u«tUW)+i(g7 + gl0,

.. (k+ 1) . 1/ (k) (k)\ 1 . . .
u4 ~ 4\u2 U3)+4(g8+gll) (8)

If new estimates are used as soon as these become available, we refer to

the updating procedure as a "successive displacement" procedure, and the

passage from the k to the (k + l)st estimate is given by

-4-

»I -* »2 +0» +T««2 + «S>

L
I

U2

u3

(k+1)

(k + 1)

(k+1)

(k+1)

1 / (k) A (k)\ , 1
4^2 + u3) + 4

*(-1
Ck+I,-4W)4<i3^)

= l(u^-)+u3^-))+|(g8 + gll]

The iteration of Equation 9 will, for the example problem at least, give more

rapid convergence than Equation 8. If the solution of the discrete problem

is to be implemented on a conventional sequential processor, the iteration of

Equation 9 is to be preferred. But what if a parallel processor is available

and a processing unit can be assigned to each point of the mesh of Figure 1

(equivalently, to each variable of Equation 4), or indeed to each point of a

much larger mesh, so that the updating of mesh point values can be carried

on in parallel? Does the obvious potential for parallel execution inherent in

the simultaneous displacement procedure make it the logical choice for

parallel processing? And does the apparently sequential character of the

successive displacement procedure render it unattractive for parallel execu-

tion? A reasonable answer to *:hese and related questions requires additional

analysis.

3. STATIONARY ITERATIVE TECHNIQUES AND PARALLEL PROCESSING

a. Basic Stationary Iteration

In the previous section, we considered the iterative solution of a particular

system of linear equations that arose in the numerical solution of Laplace's

equation. In this section, we shall examine more general systems

AX = B (10)
I
k for exhibiting their iterative solution via parallel processing. Our assump-

tions regarding the n X n coefficient matrix A remain those of Section 1;

1 namely, that A is real and symmetric with positive diagonal elements. If

we write Equation 10 in the equivalent form

X = MX + G , (11)

-5-

i we may specify iterative solutions to Equation 10 by selecting X* , an initial

approximation to X, and by iterating

1 X(k+1) = MX<k)
+G. (12)

The sequence X , X* , X' , . . . generated by the iteration will, for

suitable conditions, converge to a solution of Equation 10. A wealth of lit-

erature exists regarding necessary and sufficient conditions for the conver-

gence of Equation 1Z (see, for example, References 1, 2, and 3). The

matrix M is called the iteration matrix. If it does not vary from iteration

to iteration, the iteration is said to be stationary. If we split the coefficient

matrix A as

A = D - E - F, (13)

where D is a diagonal matrix and E(F) is lower (upper) triangular,

then two equivalent forms of Equation 10 are given by

I
I
I

if

and

X = D-1 (E + F)X + D"XB (14)

X = (D - E)_1FX + (D - E)_1B (15)

From the first form, we obtain the simultaneous displacement PJ iteration

x(k + 1) _. D-l (E + F) x(k) + D-1B. (16)

from the second form, we obtain the successive displacement GS iteration

X(k + l) = (D - E)"1 FX(k) + (D - E)_1B; (17)

The iterations of Equations 8 and 9 are particular cases of Equations 16 and 17.

A variety of authors have achieved rather striking success in developing an

accelerated version of Gauss-Seidel, known as the successive overrelaxation

(SOR) method. We shall subsequently consider parallel execution of Gauss-

Seidel and SOR, but first we shall consider the problem of developing an

accelerated version of Point-Jacobi.

j| b_. Accelerated Point-Jacobi

A potentially accelerated form of the PJ iteration can be developed as follows:

We recall that the PJ iteration given by Equation 16 is just

-6-

i:
i
i

x(fc + l) = D
-1

(E + F)X(k) +D-1B. (18)

If we denote by X* ' the (k + l)st estimate of the solution vector X given

by PJ and then specify X 'asa weighted average of X* ' and x' ,

we have

X(k+D = wx(k+i) + (1.w)xW. (19)

In matrix form, this would be

X(k + 1} = i(l - CO) I + CUD"1 (E + F)l X(k) + COD^B. (20)

We shall restrict CO > 0 and refer to the iteration of Equation 20 as the paral-

lel relaxation (PR) method. Evidently, if CO = 1, PR reduces to PJ.

The question immediately arises as to what value of CO gives the maximum

convergence rate and for what range of CO values is Equation 20 convergent.

Let J denote the PJ iteration matrix:

J = D-1 (E + F), (21)

and let P denote the PR iteration matrix:

P = {(1 - C0)I + COJ} . (22)

We denote the eigenvalues of J by S(J), read "the spectrum of J, " und the

eigenvalues of P by S(P). Our assumption that the coefficient matrix A was

real and symmetric implies that S(A)C R; that is, the eigenvalues of A are

contained in R, the set of real numbers. The further assumption that A has

positive diagonal elements implies that S(J)C R. We see this by noting that,
-1 l/2

since the diagonal elements of A are positive, D exists as do D and

D" ' , all being real. Now we may write J = D" (E + F) = I - D" A.

Since similarity transformations preserve eigenvalues, we have

S(D1//2JD"1//2) = S(J). But J = D1//Z JD"1/2 = I - D"1//2AD"1//2.

Obviously, J = J; hence, J is real and symmetric andS(J)CR. But

S(J) = S(J); hence, S(J)C R.

It follows from Equation 20 that, if fi^S(J) and \€S(P) - that is, p and > are,

respectively, eigenvalues of J and P - we have the relation

■ 7-

X= co/x + (1 - co)

= 1 - w(l -n), (23)

and since /u is real, so isX . Since we are restricting CO > 0, it is evident

from Equation 23 that, if the PR iteration is to converge, we must restrict

H < 1. Within these restrictions, the optimum value of CO is that for which

the spectral radius of P, denoted byp (P), is minimized. Let us denote the

ordered eigenvalues of J by S(J) = |M1 > P?- •• • — M f and denote the eigen-

values of P corresponding to//, by" (cü, JJ.) il - co(l - p.). Then for 0) = 0,

we have > fco, /u.) = 1 for i = 1, 2 n. For CO > 0, u .< p. ^>(W,/u.) < A(C0, /,.).

Hence, p (P) is minimal ior\(U>, #.) = -A(co, ^/); that is for

1 -C0(1 -Mj) = 1 -C0(1 -/*n)| , (24)

which implies that

W = 2-(Ml
2
+Mn) (25)

We summarize these results in the following

Theorem

Let A be an n X n matrix that is real and symmetric with positive diagonal

entries and let the PJ iteration matrix for A have eigenvalues bounded from

above by 1. Then, the optimum relaxation parameter for PR is given by:

'"opt = 2-(M1
2
+Mn) <26>

An example of this is given by the matrix A defined as follows:

4 2 1

A = f 2 5 2 | . (27)

1 2 6

The eigenvalues of the related PJ matrix are {0.48835, 0. 19870, - 0.68705|

from which it follows CO is given by

_ 2
Wopt " 2 - (0.48835 - 0.68705)

= 0.9096. (28)

•8-

r
i:
i
i
i
i
i

The spectral radius of the corresponding PR iteration matrix is 0.5346. In

this case, the optimal strategy for PR calls for underrelaxation (u> < 1);

whereas, for SOR the optimal strategy is [for property (A) matrices at least I

always to over relax.

Another interesting feature of PR is that not only can it accelerate conver-

gence of the PJ iteration but it also can in some cases establish convergence.

It is readily shown that, if the coefficient matrix A is diagonally dominant,

convergence of the PJ iteration is assured; diagonal dominance of A is, how-

ever, not a necessary condition. For convergence of PJ, a condition that is

both necessary and sufficient is that the spectral radius of the iteration ma-

trix J be less than 1.0.

Let us consider a PJ iteration matrix J with eigenvalues S(J) bounded from

above by 1.0. Now for any eigenvalue >c/£S(J) the cox-responding eigenvalue

Xof the PR iteration matrix P is given by\(b),/J) = 1 - W (1 -H). If we de-

note the ordered spectrum of J by S(J) = <M. > V7 > ,.. > M [where//. < 1,

then for to e (0, oo) we haveX(co, U) < X(w,//)< 1 always. To ensure

A(0i}, //n) > -1, and hence convergence of the PR iteration, we need only re-

strict a) as follows:

0 < w < i TÜ <29>
n

We see then that for linear systems for which the corresponding PJ matrix J

has eigenvalues bounded from above by 1.0, the convergence - destroying

effects of negative eigenvalues whose magnitude exceeds 1.0 can be offset

by proper selection of 0). As an example of the convergence-establishing

properties of the PR iteration, consider the following matrix:

I
I
I
I
I

A =

6 1 2 1 3

1 5 4 0 1

2 4 8 1 2

1 0 1 4 3

(30)

8

The matrix A is in no way diagonally dominant, and the eigenvalues of the

associated PJ matrix are given by S(J) = { 0. 67596, 0. 56931, 0. 23783,

-0.32066, -1. 16243 f . Evidently, the occurrence of the eigenvalue

ß = -1. 16243 will cause divergence for the PJ iteration. However, the use

of PR with 0t> in the range

0 < u < 1 + 1.216243 = °-92488 <31>

will guarantee convergenc3. The optical u for this case is given by

. 2
opt " 2 - (0.67596 - 1.16243)

= 0.80435. (32)

These results are presented in Figure 2.

The coefficient matrices with which we have dealt in the preceding discus-

sion of the PR method have been assumed to be real and symmetric with

positive diagonal elements. Very often, however, iterative solutions are

sought for linear systems whose coefficient matrices possess Young's prop-

erty (A). For such coefficient matrices, the eigenvalues of the correspond-

ing PJ matrix J occur either as zero or plus-minus pairs. In such cases,

the maximum eigenvalue /u.CS(J), and the minimum eigenvalue ß € S (J)

would be related as p. - -ß , in which case the optimum ct> for PR would be

given by

<V ■ 2 - tjq ; ig = i. <33>

and PR offers no advantage over PJ. In such cases, PJ still is attractive

for implementation on parallel processors, and there exists the possibility

for increasing the rate of convergence by utilizing semi-iterative techniques.

-10-

I
I
I
r
r
r
r
r
r
r
r
r

+ 1.0

+0.73935

U ■ 0.67596

U = 0.56931

-0.73935

V * -1.16243

2.0

/6 1 2 1 3\

^ 1 5 4 0 1

A = I 2 4 8 1 2 |

I 1 0 1 4 3

\ 3 1 2 3 81

S (o"1 (E + F)) = {0.67596.

0.56931, 0.23783. -0.32066,

-1.16243f - \Vi\

x(u,w) • l - <■>(! - u)

MAX tu FOR CONVERGENCE:

u- 0.92488

Figure L - co-Dependent Eigenvalues for the PR Iteration Matrix J =
{(1 - CO) I + COD"1 (E + F)[for the Given Matrix A

For PR in general, variations of the basic iteration may prove to be effec-

tive. In Item d, below, some possible variations of the PR iteration are

outlined. In the following item the question of convergence rates is consid-

ered.

Comparison of Convergence Rates

In the preceding analysis,we have shown that for a large class of matrices, the

use of PR gives better convergence rates than those achievable with PJ, but

we have not developed a comparison of convergence rates, which is simple

in the sense that we can say the PR convergence rate is k times the PJ con-

vergence rate. In this item we shall exhibit several coefficient matrices for

linear systems and compare the corresponding convergence rates for PR

and PJ.

If for a linear system AX = B, we split the matrix A as A = D -E-F and

denote the corresponding PJ and PR iteration matrixes by J and P, respec-

tively, then we have

-11.

it

it

I

J = D"1 (E + F)

and

P = j (1-U>) I + wj| .

For a convergent stationary iteration,

X<k + J) = MX<k> + G,

we can define the rate of convergence of the iteration by

R(M) = - In p(M),

where p(M) is the spectral radius of the iteration matrix. We now exhibit

several matrices A and compare the convergence rates for the corresponding

PJ and PR iterations.

Matrix 1:3X3

A = ! 2 5 2 ; u> = 0.9096 opt

p(J) = 0.6870 P R(J) = 0.3754

p(P) = 0.5346 £> R(P) = 0.6262

Matrix 2: 3 X 3

2 1

A = I 2 6 2 I ; u>o t = 0.9003

2 5

p(J) = 0.6704> R(J) = 0.3999

p(P) = 0.5038 > R(P) = 0.6856

• 12.

r
r
r
r
r
r
r
r
r

r

[
t

L

L

Matrix 3: 5 X 5

8 1 2 1 3\

1 7 4 0 A
2 4 10 1

»
;d) = opt

0.8435

1 0 1 6
>

3 1 2 3 10 /

p(J) = 0.8785 > R(J) = 0.1295

p{P) = 0.5845 ^> R(P) = 0.5370

Matrix 4: 5 X 5

\

6 1 2 1 3

1 5 4 0 1

2 4 10 1 2

1 0 1 6 3

3 1 2 3 10

p(J) = 0.9899> R(J) = 0.0102

^(P) = 0.6566 > R(P) a 0.4207

w
opt

= 0.8325

The results are summarized and compared in Table I.

TABLE I - COMPARISON OF CONVERGENCE RATES

Matrix opt p(J) p(P) R(J) R(P) R<P>/R(J)

1 0.9096 0.6870 0.5346 0.3754 0.6262 1.67

2 0.9003 0.6704 0.5038 0.3999 0.6856 1.71

3 0.8435 0.8785 0.5845 0.1295 0.5370 4.14

4 0.8325 0.9899 0.6566 0.0102
„,._

0.4207 41.4

■13-

n

The results shown in Table J. demonstrate that significant increases in con-

vergence rate can be achieved by the use of PR. A conjecture can be made

that the increases are most attractive where they are most needed; namely,

for large matrices whose PJ iterations converge very slowly.

In the following item, some possible variations of the PR iterations are out-

lined.

d. Variations of PR Iteration

(1) Semi-Iteration

Iterative techniques such as PR can be extended to what are called semi-

iterative methods. The extension goes like this. From a sequence of esti-

mates X , x'*', X , , X 'a new estimate is formed

m
Y(-) = y a (m) x(i) >

i = 0

The problem is to specify sets of constants ja.(m)' such that the sequence
(fm^l 111
I Y | converges rapidly to a solution X. The notion of semi-iteration has

been rather extensively studied by a variety of authors (see Reference 1).

For a linear system whose coefficient matrices satisfy certain conditions,

semi-iterative methods can be constructed with respect to the Point-Jacobi

iteration, whose convergence rates compete with SOR. Coupled with parallel

processing capability, such methods should be quite attractive computation-

ally. The use of semi-iterative methods in conjunction with optimal PR

offers an interesting area of investigation, the results of which should prove

il to be of importance to parallel processing considerations.

|| (2) Variable Parameter Iteration

II The PR iteration given by Equation 20 uses a constant acceleration param-

If eter U). If we were to vary the parameter from iteration to iteration, denot-
II th
•• ing the parameter for the k iteration by w, , the resulting iteration would

-. be given by

XlRT1' = |(1.U),)I + W, D"1(E + F)!XW+U),D'1B (34) :(k + 1) = j(l -üyi + U^D-1 (E +F) X(k) +WkD"1

-14-

r
r
r

r

If we denote the k ' error by e = X - X* , then we can readily show

that

M 77 (l -
i = 1

to.)I + to. D-1(E + F) e*0)

l l x '(

th
We see that the k error is the product of the initial error and a polynomial

in the PJ iteration matrix. Proper selection of the set la;.,' may allow im-

provements over the fixed parameter scheme. Certainly the {to.{ can be

specified so as to allow us to generate the Chebyshev semi-iterative method

with respect to PJ. A form of the variable PR method might also occur in

a computational context where a constant, optimal to is desired, but must

be successively approximated as the iteration proceeds by a sequence of to's

which converge to the optimum value. Another context in which computations

that are formally the same as variable PR might occur in the numerical solu-

tion of initial value problems by marching processes. In some cases, the

equations of the marching process are given in a matrix form that is just that

of Equation 34 with the exception that the to, are replaced by variable time

increments AL . Results obtained in the study of variable PR are thus di-

rectly applicable to the study of numerical solution of initial value problems.

(3) Partitioning

The form of the PR iteration may also be changed by computational considera-

tions. Very often the linear systems encountered in practice possess n X n

coefficient matrices whose order n is quite large, say 10 or greater. In

many cases, the matrices are sparse and computer storage requirements for

such matrices are not severe as the size of the matrices might indicate.

None the less, the main memory capacity of even large computers may be

insufficient to contain all the data needed to execute an iterative solution to a

large linear system and paging procedures must be employed to transfer data

between main memory and some mass memory device such as a disk, drum,

or tape. The problem of main memory storage capacity limitations must of

course be considered when practical implementation of iterative methods for

linear systems on parallel processors is considered.

-15.

"T
if
—

In addition to partical considerations, there are theoretical questions con-

nected with the use of matrix partitioning, which is often employed in con-

junction with paging procedures. In this regard, consider a linear system

AX = B and its solution by a stationary iteration..

x(k + 1) = MX(k) + G>

The iteration may be written in partitioned form as follows:

X,

X.

i(k + D M
11

M
12

M 21 M 22

Hli ml m2 in/

(35)

Equation 35 can be written equivalent! y as

X<k + 1> =Mllx/
k> + M,?X<k> +....+M, X <k> +G. 1 111 122 1mm 1

X9
(k + 1) = M,.X.(k) + M,~X,(k) +....+M, X (k) +G- 2 211 22 2 2rim 2

(36)

..

j

i

X m <
k + 1> = M .X<k> +M ?X7 ml 1 m2 2

(k) + + M X (k) + G mm m m

Now if the estimates X.* '' X_' ,...., X * ' are to be computed

sequentially, then a successive displacement updating might be employed and

the updating equations (36) would take on the form

• 16-

i

X,(k+!) = M..X.W + M.-X0
(k) f....+M. X (k) +G-

1 11 1 12 2 Im m 1

X<k+1) =M?lXl
(k+1) + M„X,(k) +....+ M, X <k>+G, 2 21 1 22 2 2m m 2

(37)

X <k+1)=M v<k + 1>M ,X<k + 1> ++M X W+G m ml 1 m2 2 mm m m

The updating procedures given by Equations 36 and 37 might well be employed

in a situation where a computer's main memory capacity is insufficient to
(k) contain the data required for the full matrix multiplication MX , but is

sufficient to contain all the data required for a multiplication such as M. .X. .
(k)

In such cases, data required for multiplications M..X. can be paged sequen-

tially into main memory from mass memory as partial sums are accumulated

to form the result X. . Just what the effect of employing a successive

displacement procedure such as Equation 37 would be on the convergence

properties of the iteration is, in general, not known. Investigation of the

properties of an iteration such as Equation 37 would be of both theoretical

and practical interest.

e_. Commentary

In Section 3, we have considered the question of solving linear systems by sta-

tionary iterative techniques and have developed an accelerated version of the

PJ method, which we call parallel relaxation. In Section 4, we shall consider

the implementation of PR on anassociative processor and subsequently show

that our results apply to the implementation of stationary iterations in general.

4. PARRALLEL EXECUTION ON AN ASSOCIATIVE PROCESSOR

a. Introduction

The simultaneous displacement updating employed in the PR method is for-

mally well suited to parallel processing. The practical question arises as

to whether existing or near-term parallel processors are available for im- |

plementation of PR and, if so, what will be the parallel execution time and

how does it compare with the execution time for sequential processing?

-17-

I
I
I
I

Over the last several years, a number of parallel processor designs have

been proposed (see References 4 through 8). Most of these designs are of

theoretical interest only. At this writing, only two - tfie Illiac IV and the

associative processor (AP) - can be considered both practical and near term.

The Illiac IV, which is currently under development by Burroughs Corpora-

tion and the University of Illinois, is now nearing completion. A number

of companies ai working on AP's, but so far the only one scheduled for

delivery and actual operation is the AP developed by Goodyear Aerospace.

Called STARAN 4, the Goodyear Aerospace AP is scheduled for delivery to

the FAA in May 1971. It will be used by the FAA in an air traffic control

system at the Knoxville, Tenn., airport.

The Goodyear Aerospace AP has been selected as the parallel processor on

which to study the implementation of PR for parallel execution. Since the

structure and operation of the AP are not widely known, Items b and c are

devoted to a general description of the AP and its operation.

b_. AP Structure

The Goodyear Aerospace-developed associative processor is a stored pro-

gram digital computing system capable of operating on many data items

simultaneously; both logical and arithmetic operations are available. The

principal components of an AP system are as follows:

1. An associative memory array (AM) in which data are

stored on which the AP operates. Typically, the AM

may consist of 4096 words, each with 256 bits.

2. A response store configuration for each word of the AM,

which provides arithmetic capability, read/write capa-

bility, and indication of logical operation results.

3. An (optional) funnel memory of as many words as the

AM, each word with 32 to 128 bits, depending on user

need. The funnel memory provides the AP system with

both high-speed temporary storage and high-speed i/O

to external devices. Data transfer between the AM and

funnel memory is on a serial-by-bit, parallel-by-word

basis; data transfer between the funnel memory and

18-

I"

c.

external devices is on a parallel-by bit, serial-by-word

basis.

4. A data/instruction memory in which are stored the AP

program (that is, the list of instructions executed by

the AP) and data items required by (or generated by)

the AP but not maintained in the AM.

5. A control unit that directs the AP to execute the instruc-

tions specified by the AP program; this control unit is

similar to control units found in conventional computers.

Communication channels are provided between the

data/instruction memory and the .sequential control unit

and between both of these units and external devices.

One other unit of the AP that must be mentioned is the comparand register

(CR). The CR may contain as many bits as an AM word and is used both to

transmit data into the AM in a parallel-by-bit, serial-by-word basis and to

specify masking conventions for AP operations.

A simplified representation of the AP is given in Figure 3.

AP Operations

We are principally concerned with the parallel execution of arithmetic opera-

tions in the AP and, to a lesser extent, with the transfer of data within the

AP. An understanding of the AP's parallel arithmetic capability can be fa-

cilitated by considering Figure 4, which depicts the word/field structure of

a hypothetical 10-word, 20-bit AM (refer to Reference 9 for a full discussion

of the AP's logical and arithmetic capability).

In Figure 4, each of the ZO bit words has been arbitrarily divided into two

5-bit fields and one 10-bit field. Other field assignments could have been

made, and they need not be the same for all words. Field specifications

are made by the programmer in accordance with computational and storage

requirements at a given stage of the program; the specification is logical,

not physical, and can be changed for any or all words at any point in the pro-

gram by the programmer.

■19-

i I

3 f

ii

CONTROL
UNIT

1

DATA/
INSTRUCTION
MEMORY

1
EXTERNAL
DEVICES

,

1 Z\
COMPARAND
REGISTER 1

'

»• • •

11 i

1

• • •
i i ■ 1 t 7

ASSOCIATIVE
MEMORY

LU
OS
O
1-
to

LU
</>

o
Q.
to
LU

FUNNEL
MEMORY

•

•

•

•

•

•

•

•

•

•

•

•

Figure 3 - Simplified AP Structure

If, for i = 1, 2, ..., 10, we denote word i by w.; the contents of field 1 of

w. by (FL); the contents of field 2 by (F2.); and the contents of field 3 by

(F3.), then (at least) the following computations can be done in parallel (that

is, simultaneously by word, sequential by bit). Such parallel computations

are often called vector computations, since they involve like operations on

corresponding elements of two vectors of operands.

-20-

r
r

r

FIELD 3 FIELD 2 FIELD 1

20 11 10

• • •

• • •
• • ! •

• • I •

BIT NUMBER

WORD 1

WORD 2

•

WORD 10

Figure 4 - AM Structure

(Fl.) © (F2.)

or i = 1,2,..., 10 A©e |+, -, *v}

(F2.) © (Fl.)

The field into which the results of the operations are stored is specified by

the programmer. For example, the results of the ± operations could be

stored in either field 1, field 2, or field 3. We denote this, for example, by:

(Fl.) ± (F2.)

or

(Fl.) ± (F2.)

or

(Fl.) ± (F2.)

■*■ Fl.

■*■ F2.
l

F3.

1, 2, 10

= 1, 2, ..., 10

i = 1, 2 10

■21-

In the first two specifications, the original values (Fl.) or (F2.), respectively,

would be destroyed; in the third specification, (Fl.) and (F2.) would be un-

altered.

In *. or ■;■ operations, a double-length product or quotient will be available.

To save the double-length result, we would be restricted to placing the re-

sult in the double-length field, F3. For example,

(Fl.) * (F2.) - F3. i = 1, 2 10

The original values (Fl.), (F2.) would be unaltered.

Operations such as those described above are referred to as within-word

arithmetic operations. We also have available register-to-word operations

and between-word operations.

In register-to-word operations, the contents of a specified field of the com-

parand register, denoted by (CR), are used as an operand. A typical

register-to-word operation would be:

(CR) * (Fl.) " F3. i = 1, 2, ..., 10

or

(CR) ± (F2.) ^F2. i = 1, 2, 10

In between-word operations, the operand pairs derive from different words.

For example, in the operation

(Fl.) * (Fl.+2) - F3. i = 1, 2, ..., 8,

field 1 of word 1 is multiplied by field 1 of word 3, and the result is placed

in field 3 of word 1; field 1 of word 2 is multiplied by field 1 of word 4, and

the result is placed in field 3 of word 2 . . . ; field 1 of word 8 is multiplied

by field 1 of word 10, and the result is placed in field 3 of word 8. Likewise,

we could specify an operation such as

(Fl.) + (F2.+1) - Fl. i = 1, 2, ..., 9.

We note that, for between-word operations, the distance between words from

which operand pairs are derived is constant; that is, with each word i, we

associate a word i ± A.

-22-

Such between-word operations are executed in parallel but are more time

consuming than within-word or register-to-word operations. The increase

in time is proportional to the distance A,

In the preceding examples, operand pairs were derived from either AM

word/field locations or the comparand register, and results were stored in

AM word/field locations. For AP systems incorporating a funnel memory,

one element of each operand pair can be derived from the funnel memory,

and results can be stored in the funnel memory, with operations taking place,

as before, in parallel. Simple data transfer operations between the AM and

the funnel memory proceed in a word-parallel, bit-serial fashion.

The bit-serial nature oi AP operations results in long execution times if

computation is considered on a per-word basis. The source of computational

advantages for an AP lies in the AP's ability to do many, indeed thousands,

of operations in a word-parallel fashion and thus give, for properly struc-

tured computations, effective per-word execution times that are very attrac-

tive.

d. Parallel Relaxation Structure

For a linear system AX = B, the PR iteration is given by

x(k+l) =|{1 _ ^j + wD-l (E + F)l X(k) + wD-1B

We shall let the n X n PR iteration matrix be denoted by

- (Pjj) ■ { (1 - 00)1 + üJD'^E +

1,
4

(38)

(39)

and we shall let the vector CüD B be denoted by G = (g.). The elements of

P = (p..) and G = (g.) do not change from iteration. The k + lst estimates of

J x.» are computed as

n
(k+D _

J 1
p. .x (k) + g., i = 1, 2, . . ., n. (40)

The structure of the computations in Equation 40 suggests storing data in an

AP as shown in Figure 5, where we consider a 5 X 5 example.

-23-

X<k> FIELDS X<" + '»

1 2 3 4 5 6 7 WORD

"1 "11
p12

"13

"14
p15

Xl
X2
x3
x4
x5

1

2

3

4

5

6 92 p21 xl
P22 x2 7
p23

x3 8
p24 x4 9
p25 X5 j

10

11 93 p31 xl
p32 x2 12

"33 x3 13
p34 x4 14
p35 x5 15

16 94 p41 xl
p42 x2 17
p43 X3 18
P44 x4 19
p45 X5 20

21 95 p51 Xl
p52 x2 22
p53 x3 23
p54 x4 24
p55 x5 25

Figure 5 - AP Data Storage Scheme

The storage scheme employed involves redundant storage of current esti-

mates of the variables x,, x,, ..., x . The redundancy is employed to

gain computational speed; this will become clear in the following discussion.

We shall describe the operations required for one iteration in a step-by-step

fashion with reference to corresponding figures depicting the contents of the

AP memory.

For each word {1 through 25) in step 1. we multiply the contents of field 2

by the contents of field 3 and store the double-length product in field 4. The

resulting state of the AP memory is given in Figure 6.

Step 2 actually is a subroutine type of operation in which the double precision

n
sums y^ p.-x. are formed in a treed operation that injects parallel

j = 1 lJ J

-24-

I

1 2

x(k)

3

Y(k + 1)
FIELDS *

4 5 6 7 WORD

»1
pn
"12

"13
p14
p15

xl

"2
x3

x4
x5

pllxl
P12X2
P13X3
P14*4
P15X5

1

2

3

4

5

6 92
p21 xl P21X1
P22 t P22X2 7

"23

"24

x3
x4

P23X3
P24X4

8

9

"25 x5 P25X5 10

11 h p31 xl p31x1
p32 x2

p32x2 12
p33 x3

p33x3 13
p34 x4 p34x4 14
p35 x5 p35x5 15

16 94
p41 x1 p41xl
p42 x2 p42x2 17
p43 x3 p43x3 18
P44 x4 P44*4 19
p45 x5 p45x5 20

21 "5
P51 x1 p51xl
p52

x2 p52x2 22
p53

x3 p53x3 23
p54 x4

p54x4 24
p55 x5 p55x5 25

Figure 6 - AP Storage Configuration after Step 1

computation into the basic summing process. The summing subroutine is

described in Figure 7 and is executed in parallel by the AP for each consecu-

tive set of 5 (for the example, n in general) words. The result of this sum-

n
ming operation is that in field 4 word 1 contains J£ p. .x.; word 6 contains

j = 1 J J

n n
T^ p_.x.; ..., word 21 contains]£ p,--x.. In general, for an n X n sys-

j = 1 ^ J j = 1 5J J

tern, these sums would be accumulated in field 4 of words 1, n + 1,

2n + 1,..., (n - 1) n + 1. The resulting state of the AP memory is given in

Figure 8.

I -25-

I

{X(I)}.n

K = 1

L = [ln2(n)] + 1

Ml = n + 1
. 2 J

M2 = n - Ml

DO: I = 1, M2

X(I) = X(I) + X(I + Ml)

S = X(l)
YES i K - L?)

VEND/

NO

n = Ml

K = K + 1

mm

TREE-SUM ALGORITHM FOR E xi= ZX(I) = s

i = i i = i

Figure 7 - Tree-Sum Algorithm

•26-

„(k.) ,(k + 1)
FIELDS x

1 2 3 4 5 6 7 WORD

9l PU
P12
P13
P14
P15

Xl
X2
X3
X4
X5

»11*1
p12x2
p13x3
p14*4
P15XS

EPljXj 1
2
3
4
5
6 *2

P21 "l p2l"l EP2JXJ
P22

%„t p22x2 7
P23 *3

p23x3 8
P?4

X4 p24x4 9
P25 X5 p25x5 10

11 «3
P31 Xl p31Xl Ep3jxj
P32 X2 p32x2 12
P33 "3

p33x3 13
P34 x4

p34x4 U
P35 x5

p35x5 15
16 94

P41 X1 P41xl 2: P4jxj
p42 X2 p«2x2 17
p43 X3 p43x3 18
P44 x4 p44x4 19
P45 X5 p45x5 20

21 «5 P51 Xl p51x1 £P5jXj
P52 X2 p62x2 22
P53 X3 p53x3 23
P54 X4 P54x4 21
P55 X5 p55x5 25

[
Figure 8 - AP Storage Configuration after Step 2

For words 1, 6, 11, 16„ a.ad 21 in step 3, field 1 is added to the upper half

of field 5, and the sum is placed in field 6; field 6 of words 1, 6, 11, 16, and

21, respectively, contains now the k + 1st estimates of x., x_, x_, x., and

xc. The kth estimates are retained redundantly in field 3. The resulting
5

state of the AF memory is given in Figure 9.

In step 4, we prepare for convergence testing. For words 1, 6, 11, 16, and

21, field 3 is subtracted from field 6, and the difference is placed in field 7.

In words 1, 6, 11, 16, and 21, respectively, field 7 now contains the differ-

ences x (k+1) (k) (k+1) (k)
'1 ~ Äi ' ""2 2

step 5, which forms absolute values.

, • • •, (k+1) (k) Xe ' - xc
x , we next execute

For words 1, 6, 11, 16, and 21 in step 5, we set field 7 equal to the abso-

lute value of the previous contents. The AP memory state resulting from

steps 4 and 5 is given in Figure 10.

L -27-

x(0 FIELDS x(k + 1)

1 2 3 4 5 6 7 WORD

"1 "11
p12

"13

"14

"15

xl
x2
x3
x4
x5

pnx,

P12x2

Pl3x3
p14x4

P)5x5

EPTJXJ L* 9, 1

2

3

4

5

6 «2 "21 "l P21x, rp2jxj 2> 92
P22 x2 P22x2 7
P23 x3 P23x3 8

"24 x4 p24x4 9

"25 *5 P25x5 10

11 «3 p31 xl "31xl EP3jXj Z* 93
"32 x2 P32

x2 12
p33 x3 p33x3 13

P34 x4 P34x4 14

P35 x5 p35x5 15

16 «4 P41 xl p41x1 £P4jXj 2:^4
P42 x2 p42x2 17

P43 x3 p43x3 18
p44

x5
p44x4 19

P45 x4 p45x5 20

21 95 PSI
xl p51xl £P5jXj E+ 95

p52
x2 P52x2 22

p53 x3 p53x3 23
p54 x4 p54x4 24
p55 x5 P55X5 25

Figure 9 - AP Storage Configuration after Step 3
1

Step 6, like step 2, actually is a subroutine type of operation. We actually

do the convergence testing by doing a less-than comparand search in the AP.

Effectively, we ask whether for all variables Xj, X2, x-j, X.A, and X5 the

magnitude of the difference of the kth and k + 1st estimates is less than a

specified tolerance. If so, we say convergence has been achieved, and the

latest estimates would be printed out. If not, more iteration would be re-

quired, and we would pass to step 7.

In step7, the hew estimates for x., A?, x,, x., and x,. are sequentially

read out of field 6 of words 1,6, 11, 16, and 211. Following each read, the

x. value is redundantly written into its proper position in field 3 by a word

parallel/bit parallel write.

In step 8, iteration continues; we begin again at step 1.

^28-

1 —-t

r

r
r

r
r
r

r

,<k)
FIELDS ,(k ♦ i:

"l
pll
P12
pu
p14
p15

"1

'2

"3
x4
x5

P,,x,

pl?x2
P13X3
p14x4
P15X5

£p,jxj XT + »1 L (k + 1) , (k)|
|X1 xl 1

«2 p21
P22
p23
P24
P25

"l
x2

x3
x4
x5

P21xl
P22x2
P23x3
P24x4
p25x5

£P2j"j Z+ «2 L (k ♦ l) (k)|
IX2 x2 1

93 P31
p32
P33
p34
P35

xl
x2

x3
x4
x5

P31X1
p32x2
P33X3
P34x4
P35X5

SP3jXj Z+ 93 Ix (k + !' x <k>l lx3 x3 1

94 p41
p42
p43
P44
P45

xl
x2
x3
x4
X5

p41xl
p42x2
P43XJ
p44x4
P45X5

LP4jXj £ + 94 Ix <k + 1) x (k)|
lX4 x4 1

95
P51
P52
P53
P54
p55

xl
x2
X3
x4
x5

p51xl
p52x2
p53x3
p54x4
p55x5

EP5jXj E+ 95 Ix (k + " - x <K>I lx5 x<5 1

WORD

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Figure 10 - AP Storage Configuration after Step 5

More economical use of storage could be made in storing intermediate re-

sults, The storage scheme shown was selected for elucidation of AP opera-

tions, not optimal use of storage.

The evident source of computational advantage for the AP lies in its parallel
(k + 1) (k) arithmetic capability. In a stationary iteration Xv = MXV + G, not

(k) only can each element in the matrix product MXX be computed in parallel,

but the scalar products required for each element can be computed in paral-

lel and the subsequent summing process treed. Within AP capacity, only

the treed summing process is explicitly dependent timewise on n (the system

size), and the requisite number of computational levels increases with ln^tn),

In contrast to this near-independence of n for parallel execution in an AP,

sequential methods of execution will require an execution time varying with

n since each element of the product MX* ' will require up tr n multiplies

•29-

and there are n such elements. This basic advantage enjoyed by the AP will

be evident in the tinning estimates described in Item e_.

Tinning Estimates

In this item, we present computer-dependent timing estimates for solving _

an n X n system of linear equations AX = B by the PR iterative technique.

Each iteration will generate a new estimate for each variable x., i = 1, 2, .. ., n
T where we have X = (x., x~, .. ., x) . We shall refer to one complete up-

dating of the variables as a sweep over the set ix. I . Depending on the com-

puter organization selected, the operations required in a sweep will be exe-

cuted either sequentially or in a parallel fashion. The number of sweeps

required for convergence will be problem dependent. The computer organi-

zations we consider are the following: (1) parallel processor, Goodyear

Aerospace associative processor; and (2) sequential processors, com-

puter 1 (Cl) and computer 2 (C2). We employ C 1 and C2 as pseudonyms

for two commercially available computers of modern design and wide usage

that have floating-point multiply times of 21. 5 fxsec and 4. 5 jxsec, respectively,

for 24-bit mantissas.

In Item_f, we shall see that results given here are applicable to parallel exe-

cution of stationary iterative techniques in general, whether simultaneous or

successive displacement updating procedures are employed.

In TableII, we summarize the execution times required for one sweep employ-

ing the PR technique. Total problem execution time would increase with the

number of sweeps or iterations required and with required i/O and housekeep-

ing operations. The times given are meant only as estimates for comparing

parallel versus sequential execution and for exhibiting the increasing advan-

tage of parallel execution as system size increases. As pointed out in Item^i,

the reason computational advantage accrues to parallel execution as n in-
2

creases is that sequential execution time increases with n while the parallel

execution time increases with In (n).

The AP times in Table II are given for 20 and 30 bits. These times are for

fixed-point computation (double precision inner product accumulation is

employed). Existing models of the AP do not incorporate hard-wired floating-

point operations. Floating point is available via software and, if employed,

-30-

TABLE II- EXECUTION TIME IN MILLISECONDS FOR

ONE SWEEP BY THE PR METHOD

Time per sweep (iteration), milliseconds

System size Cl* C2+ AP, 20 bits AP, 30 bits

5X5

25 X 25

50 X 50

0.98

21.62

85.00

0.27

5.60

21.60

0.54

0.95

1.38

0.94

1.47

2.02

Computer 1 (Cl): 21. 5fj sec multiply.

Computer 2 (C2): 4. 5/Jsec multiply.

overall execution times will typically increase by a factor of approximately

1.4.

f. General Stationary Iteration

We have examined the structuring of the PR method for parallel execution on

the AP and have developed timing estimates for one sweep or iteration. For

comparison purposes, we also developed estimates of execution time for a

PR sweep using sequential processors. From this comparison, it was seen

that computational advantage rested with the AP and that the advantage in-

creased with system size.

One might object to the timing comparison by noting that, for sequential exe-

cution, GS and not PR usually would be chosen, and GS would probably give

a better convergence rate with little penalty in terms of execution time per

sweep. It also could be pointed out that GS often can be accelerated by em-

ploying SOR.

In answering such an objection, we might first observe that, in general, very

little can be said about the relative convergence rates of PJ or GS. In fact,

convergence of one method does not imply convergence of the other. We note

further that the results of Item b of Section 3 allow the acceleration of PJ via

FR in cases where theory for SOR has not yet been developed. But such

-31-

I
i

answers do not get at the heart of the matter. The answer we must make is

that the successive displacement GS or SOR methods can be executed in

parallel.

The amenability of GS or SOR to parallel execution is, I believe, sometimes

obscured by the use of the Laplace equation example we employed earlier.

In such examples, we cyclically update interior mesh points, using - for

successive displacements - new pointwise estimates as they become avail-

able. This sequential formulation of the computational procedure tends to

convey the impression that new estimates must be computed sequentially if

successive displacement updating is employed, the impression probably being

strengthened by writing the updating equations in a form such as Equation 9.

But although under sequential execution the computation of each new estimate

in turn uses the most recently computed estimates, the chain of computations

ultimately traces back to estimates available at the beginning of the sweep.

The specification of this chain for each point or variable will allow the com-

putations to proceed in parallel. In fact, we have already specified the chain

of computations in the matrix formulation of GS, given by Equation 17; namely,

X(k + !) = (D - E)"1 FX(k) + (D - E)_1B.

Evidently, GS also can be executed in parallel if we make the initial invest-

ment of computing (D - E)'

eluded, which we write as

ment of computing (D - E)" F. In fact, any stationary iteration, SOR in

x(k + 1) = MX(k) + G

can be executed in parallel on an AP using the same computational procedure

developed for PR. Parallel computation will require that the iteration ma-

trix M be computed and stored in the AP, but once available, the AP execu-

tion time is independent of the analytical complexity of M. The question of

how best to compute a particular M, either by parallel or sequential methods,

is not considered here nor is the problem-dependent question of comparing

total execution times for the several iterative methods considered. Our

point is that apparently sequential techniques such as SOR can be executed

in parallel.

■32-

I
I

5. SUMMARY

We have considered the parallel implementation of stationary iterative tech-

niques on an associative processor. Execution times for parallel and se-

quential processing have been compared with the advantage seen to be with

parallel processing, an advantage that increases with system size. It was

observed that the parallel processing capability of the AP is applicable not

only to simultaneous displacement techniques such as Point-Jacobi or paral-

lel relaxation but also to successive displacement techniques such as Gauss-

Seidel or successive overrelaxation.

6. REFERENCES

1. Varga, R. S. , "Matrix Iterative Analysis, " Prentice-Hall Inc., Englewood
Cliffs, N.J., 1962.

2. Wachspress, E. L. , "Iterative Solution of Elliptic Systems, " Prentice-Hall
Inc., Englewood Cliffs, N.J., I960.

3. Forsyth, G. and Wasow, W. , "Finite Difference Methods for Partial Differ-
ential Equations, " John Wiley & Sons, New York, N. Y. , I960.

4. Holland, John, "A Universal Comput er Capable of Executing an Arbitrary
Number of Subprograms Simultaneously, " Eastern Joint Computer Confer-
ence, 1959.

5. Slotnick, D. L. , "The Fastest Computer, " Scientific American, Vol 224,
No. 2, February 1971.

6. Batcher, K. E. , "Sorting Networks and their Application, " Proceedings of
the Spring Joint Computer Conference, 1968.

7. Stone, H. S. , "Parallel Processing with the Perfect Shuffle, " IEEE Trans-
actions on Computers, Vol C-20, No. 2, February 1971.

8. Rudolph, J. A. , et al., "The Coming of Age of the Associative Processor, "
Electronics, 15 February 1971.

9. GER-15096, "STARAN IV Programming Manual, " Goodyear Aerospace Cor-
poration, Akron, Ohio, December 1970.

■33-

